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ON PATTERN CLASSIFICATION ALGORITHMS —

INTRODUCTION AND SURVEY ™

By
Yu-Chi Ho and Ashok K. Agrawala
Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

This paper attempts to lay bare the underlying ideas used in
various pattern classification algorithms reported in the literature.
It is shown that these algorithms can be classified according to the
type of input information required and that the techniques of estimation,
decision, and optimization theory can be used to effectively derive

known as well as new results.

The research reported in this work represents an expanded version
of a talk of the same title given by the first author at the Tenth
Anniversary Seminar of the Statistical Department, Harvard University,
April 1967.



I. Introduction

Pattern classification or recognition covers an extremely broad
spectrum of problems. Most of us are only concerned with one or two
of these at any given time. For example, there is the engineering
aspect of the pattern classification problem which is mainly concerned
with the implementation and design of actual recognition devices. At
the other extreme, there is the artificial intelligence aspect of the
problem which is concerned with the philosophical question of learning
and intelligence. It is both stimulating and controversial [32,19].
Similarly, the study of recognition mechanisms in biological systems
is another accepted field of study [20]. In this paper, we shall not
touch on any of the above mentioned areas. Our survey will be con-
centrated on what might be called the analytical aspects of the pattern
classification problem. By this we mean that the problem is viewed
as one of making decisions under uncertainty and the mathematical
techniques of decision, estimation, and optimization theory are
brought to bear on the problem.

As it is usually understood, there are two fundamental problems
associated with this aspect of pattern classification.

(i) Characterization Problem. Given a pattern, signal or waveform,

before any decision can be made concerning the pattern, it is often
convenient as well as necessary to convert the pattern, signal, or

waveform into a set of features or attributes which characterize the

pattern under consideration. These features are usually denoted by
the real variables Xiyer s X and the vector x is called the pattern

vector. If we represent the original scanned pattern or sampled
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waveform as a vector z, then the characterization or feature selection
problem can be simply but vaguely stated as finding a map from z to x,
i.e.,

x = ¢(z) (I-1)
such that x "adequately characterizes" the original z for purposes of
classification but the dimension of x is much smaller than that of z.

(ii) Abstraction and Generalization Problem. Once a set of features

has been selected, and certain data concerning the patterns and their
features are given, the next problem is the determination of a decision

function of these features based on the data given such that

Z 0 X € class H1 %
f(x) = (I-2)
<0 x € class H®
The problem of abstracting the necessary information from the given
data to produce the decision function f(x)** is called abstraction.
Often times, it is convenient but not absolutely necessary to process
the given data sequentially or iteratively in order to determine f(x).
This iterative procedure for calculating f(x) is known as 'trainin

procedure', 'adaptation', or 'learning. ‘+ Once a decision function

f(x) has been found, the generalization problem attempts to assess

the goodness of the f(x) through the determination of various error

probabilities. Fundamental to this assessment is the knowledge (given

* In the main, we shall restrict ourselves to two-class problems. In
section IX, we shall discuss the extension to multi-class problems.

#¢ Sometimes f(x) is also referred to as a decision surface inn
dimensional x space.

4 In the context of this paper, they simply represent entrenched

terminology. No philosophical or metamathematical meaning should
be attached to these words.




or calculated) of the quantity P(Hl/x) =1 - P(Ho/x). In fact, the
generalization problem can be viewed simply as that of the deter-
mination of P(Hl/x).

The distinction between problems (i) and (ii), of course, is
not always clear cut; nor can their solutions always be separately
considered. For example, how well the characterization problem is
solved clearly affects the success of an abstraction algorithm and the
ability of the resultant decision function to generalize. In fact, itis
generally recognized that (i) is really the principal problem in pattern
recognition.

The present paper is devoted to a survey of the various algo-
rithms for the solution of the abstraction problem of pattern classi-
fication only. Without minimizing their importance, the characterization
and generalization problems will be discussed only to the extent that

they are related to the abstraction problem.

II. Types of Input Data
The various abstraction algorithms to be discussed require
different types of input data. In this section we shall list these
and establish a common notation to be used in the rest of the paper.
There are two pattern classes, H1 and H°. The probability
of occurence of patterns from the ith class is denoted by P(Hi).
If this probability is not explicitly given, then we shall assume it to
be equal to 1/2, i.e., both classes occur equally often. The pattern
vectors will be denoted by x with the understanding that the compo-
nents x, are features determined as a result of the solution of the
characterization problem. Four types of data concerning x will be

considered.



(i) Functional form of the condition density p(x/Hi, 0).

By this we mean that the form of the conditional density func-
tions of x for both classes is given to within the specification of a
set of parameters . For example, we may be given that the pattern
vectors from both classes are gaussianly distributed with unknown
mean and covariances.
(ii) Parameters of p(x/Hi, 8).

By this it is meant that the values of the parameters 0 in (i)
are also known.
(iii) Sample patterns with known classification.

As part of the given data for the abstraction problem, one is
often supplied with a set of training sample patterns of known classi-
fication. We denote the two sets

), st @),k ) 2y

o o o A o
{x°(1),x°@2), .. ., x%n )} £x°(n,)
In this case we have two sets of 1y and o samples for classes H
and Ho, respectively. For notational compactness, the two sets are

often joined to make a matrix, each row of which is a sample pattern

from one of the two classes as shown below:

[ 1 ST
. LT
Al o (n, +n_) x(l +m) matrix
F
4 aewT
o |
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The first column of ones and minus ones is used to indicate the known
classification of the patterns.
(iv) Samples of unknown classification.

In so-called problems of training without a teacher, sample
patterns of unknown classification are given. In this case they are
simply indicated as

x(n) 2 {x(1),x(2), ..., x(n)}
In connection with (iii) and (iv) it is always assumed that the samples
are independently chosen. The order of appearance of these patterns
is of no significance.

Depending on the combinations of (i)-(iv) that are supplied,
different abstraction algorithms result. The following sections will
classify and discuss the various algorithms on the basis of these

input data and the natural mathematical techniques used in each case.

III. Case A - Data Type (i) And (ii) Are Given
When the conditional density functions p(x/Hi, ) including the
values of 0 are given, the problem reduces to that of simple hypothesis
testing in statistics. The basic quantity of interest here is the
likelihood ratio defined as
Lix) = R/H) (III-1)
p(x/H°)

A decision function formed by comparing L(x) against a threshold

value n,.i.e.
f(x) = L(x) - n (III-2)
is known to be optimal for a variety of criteria depending on the

specific value of n. For example, (Selin Ch. 2, 1965 [43]).




(i) Neyman-Pearson Criterion.

Let X1 4 {x | f(x) 2 o} , and x° 4 {x | f(x) <o} and

a £ S p(x/H®)dx = error probability of type 1 (1I1-3)
Xl

p 2 5 P(X/Hl)dx = error probability of type 2 (II1-4)
)

X
If we selected the value of n in (III-2) to yield a fixed value of a, then
the decision function f(x) has the property that it minimizes the value
of B as compared to any other f(x) yielding the same or smaller a.
(ii) Bayes Criterion.
If the prior probabilities of occurence of the two classes, P(Hi),
as well as the cost of wrong decision C1 and C, for the two error

types, are given, then selecting

P(HO)Cl
n=— (ILI-5)
P(H )C2
will minimize the average risk of making wrong decisions.
(iii) Minimax Criterion.
If the prior probabilities, P(Hl), are unknown, then we may
wish to choose the value of n so as to minimize the average risk

against the worst value of P(H'). This is given implicitly by

C,a=C,p (ILI-6)

Special Case of the Gaussian p(x/Hlle).

In the case when p(x/Hl, 0) are gaussian, the likelihood ratio

can be explicitly written in terms of the means, By and covariances




Zi s + =0,1. Since the logarithm function is monotone, it is also

customary to write f(x) = InL(x) - lnn and we have
1 T 1 T.-1
f(x):z[(x-p.o) Zo (X'HO) - (x-pl) Z‘l (x-p.l)]

1 lzoI
+5ln —— =-1nn (III-7)

Ty

i.e. the optimal decision functions are quadratic. If we furthermore

assume that 21 = ZO = Z, then Eq. (III-7) simplifies to

f(x) = xTZ—l(p,l - |.LO) + constant term
2alx +a_ (III-8)
a linear decision function.” In communication terminology, we let

components of x represent the successive samples of an input wave-
form which may be a known signal plus noise or noise only. The
components of "a" are then the impulse response of a linear discrete
"matched filter " whose output at a given time is the value of the
decision function f(x). This is the solution to the problem of de-
tecting the presence of a known signal in gaussian noise.

A linear decision function of the type of Eq. (III-8) also arises
naturally in other pattern classification approaches to be described
later. Their ease of implementation is a major factor of their
popularity. In fact, one is often led to consider only the determina-
tion of the best linear decision function based on the given input data.
For the gaussian case discussed here, this question has been re-

solved by Anderson and Bahadur (1962). [6]

* MaMhere is not to be confused with the a of Eq. (III-3).




Other Optimal Quadratic f(x)

A quadratic f(x) of the type of Eq. (III-7) is actually optimal* for
the more general type of distributions than gaussian. Some of these
generalizations have been studied by Cooper [14,13]. Consider the

case where p(x/Hl) is given by

|

p(x/H') = Az | “hl(x - ui)TZi'l(x = b)) (II1-9)

where h is a function integrable in n-space and monotone, i.e. h(a)

decreases monotonically for increasinga,o<a <° | and Ai is a

’
constant adjusted to insure 5p(x/Hi)dx = 1. It can be shown that p,

and Ei are the mean and covariance matrices respectively of p(x/Hi,) and
that the class encompasses a wide range of distributions including the
normal, Laplace, and rectangular distributions. In the special case
when the determinants IZI | = lZOI, then the optimal f(x) is the opti-
mal separating surface for spherical normal, Pearson II and VII types

of distributions [13].

Sequential Decision Procedures

In many classification problems, the features or attributes of a
sample pattern, x,, are received sequentially in a natural way, e.g.
the xi's are the sampled value of a waveform in time. In other cases,
it may be advantageous to arrange to examine the features in de-
creasing order of significance with the hope that a classification can
be reliably made without having to go through all the features of a
pattern most of the time. In either case, one is led to the considera-

tion of sequential decision functions.

* In the sense of Bayes criterion with equal cost of misclassification.
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The main tool used here is the sequential probability ratio test
(SPRT) developed by Wald [49]. This is a natural extension of Eq.

(ITI-1). Let

1
p(Xla"'yX]-/H )

o
p(xl, . ..,xj/H )

L;(x) 4 L(xp, -0 ,x) = (L1I-10)

Instead of a binary choice of decisions after j features, we use the

following analog of Eq. (III-2).

Lj(x)-nAao erl
Lj(x) -ng S o x ¢ H° (I1I-11)
B < Lj(x) < N Observe the next feature Xj+1

It is well known that if we set

_1-p - B (III-12)

A~ Ta "B~ 1-a
then the decision function of (III-11) has the property that among all
sequential tests with the same specified a and P this SPRT will
require the smallest number of features to reach a classification
decision on the average.*
Computationally, the main problem in the use of SPRT is the
recursive evaluation of the likelihood function. In general, for real

time application one would like a formula of the type

= x i ing x, -1
Lj+1(x) Lj(x) (term involving 541 only) (III-13)

The above statement is true to within the accuracy of the so-called
"excess over boundary" represented by L_j(X) - np OT Lj(x) - g [49].
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or

ln[Lj+1(x)] = 1n[LJ.(x)] + In[x.

i+1 term] (111-13")

This turns out to be possible if the xi's belong to a fairly general class

of gaussian sequences. In particular, let

x. = Hy. + v,
J J J
(III-14)
.= Py, ot w,
[A IS T S B
where Vj and wj are independent white gaussian sequences with
_ T
E(v.) =0 E(v.v.") = R.0_,
J J1 J ij
(III-15)
T
E(w.) = W, E[(w, - %) (w, - %,) ]=Q.0..
(WJ) ¥ [(wJ WJ)(W1 )] i1

i.e. the features are noise corrupted linear combinations of the state
of a vector gauss-markov sequence. Thena set of finite dimensional
sufficient statistics of the features exist in the form of conditional

mean and covariances of the state vy, (?r, Py)’ that is
i i
p(xj/xl, REPEINE H') <=> p(xj/Q,Py; H) (III-16)

These statistics can be recursively updated in terms of the "Kalman
Filter" well known in control theory [26].

The relationship (III-16) and the observation

. _ i
y ooy X /HY) = POc/x), oy %; S H)p(x, - - - ,xj_l/H )

p(xj,x i-1

j=1
(I11-17)
immediately leads to Eq. (III-13). This powerful technique apparently

has not been exploited to any great extent in the pattern classification

literature.
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Fu and his associates have studied various aspects of sequential
methods as applied to pattern recognition. Chen [10] considered the
reordering of the unobserved features so as to next observe the feature
containing most significant information about the pattern. A straight-
forward SPRT is then applied to the features selected. For a SPRT
with two parallel stopping boundaries as in Eq. (III-11) one can easily
compute the average number of features required for a decision. This,
however, does not guarantee that the decision process will terminate
in every case. In practice it may not be possible to observe more than
a finite number of features. Chien [11,12] has suggested using a time
varying stopping boundary to assure a termination in a finite time.

Consider the features x TN approximated by a continuous

1% - -

time function x(t). Our two hypotheses now involve determining x(t) as
. 1 .

samples from one of the two stochastic processes H® or H'. Again

the likelihood ratio can be formed and a continuous analog of a SPRT

used for decision purposes:

1
Lx(t)] = plx(t)/H ] (II1-18)

o
p[x(t)/H"]
The modified SPRT is stated by the following inequalities

ng(t) < L{x(t)] < ny(t) (ILI-19)

where nB(t) and nA(t) are nondecreasing and nonincreasing (respectively)
1

functions of time. The decision is made as to class H® or H  when

left or right inequality is violated. By making nA(t) and nB(t)

functions of observation time it is possible to insure that a decision

is reached in a finite time.



-12-

The expected time of reaching a decision and the probabilities
of error, of course, will be different from the usual SPRT. But
they may be calculated and controlled in advance.

One form for U and ng may be the following

Ir
Inn, () = -a(l - t/T) 2
(ILI-20)
b
Inng(t) = b(1 - t/T)
where oS tST, o<r_, rbsl,a>o,b>o

T is the preassigned time at which the test is truncated. Let us denote
the expected termination time for MSPRT™ by E'(tT) and E(tT) for a
standard SPRT, and by a' and B' the misclassification probabilities of
a MSPRT. Ifa and B are very small and the boundaries of the Wald

test and the MSPRT begin at the same point then

E(t+)
~ T
1 ~
E(tT) T,
1 + T E(tT)
and
br, E(t.)
al=a |1+ Tf E':r(t )
=ity

Therefore the expected time of termination is reduced and is

controlled by the parameter r., while the error probability has in-

b,
creased. If itis desired that the same error probabilities be
achieved in both tests, the boundaries of a MSPRT should begin at a

higher value than those in Wald's SPRT.

* Modified Sequential Probability Ratio Test.
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By arbitrarily assuming the form for the stopping boundary with
undetermined parameters, e.g. Eq. (III-20), an optimal MSPRT w. r. t.
the assumed structure can be designed. If we know the costs of
continuing the observations and the cost of making a wrong decision,
using available information at every instant the idea of dynamic pro-
gramming can be used to arrive at the best stopping boundary using
the standard idea of backward sweep and the principle of optimality.

In a practical situation, this may result in excessively large amounts
of data that cannot be handled. Chien [11] has suggested some proce-
dures to reduce the total data to be handled at any stage.

Summarizing, we may say that case A is characterized by direct
application of decision~theoretic ideas to pattern recognition. Because
of the assumed availability of prior data, usually no iteration is in-
volved in the determination of the decision function or separating

surface.

IV. Case B - Data Type (i) and (iii) Are Given

When the functional form of conditional density function p(x/Hi, 0)
is given but 6 are unknown parameters, the obvious modification
involves the use of the given sample patterns with known classification
to estimate these parameters before performing hypothesis testing.

The basic quantity of interest still is the likelihood ratio which is now

defined as:

Lo = B/ () o) B A B/ @D gy

p(x/x°(1). . .x%(n),H%)  p(x/x"(n), H)
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We may write

~

ple/x(n), ) = | plx/8, Hp(8/x (m), H')ab (1v-2)

Assuming the computation of (IV-2) is straightforward though it may
be laborious, the determination of the conditional density p(e/xl(n), H')

becomes the principal problem. We have by Bayes Rule,

; i i i
p[0/x n)] = p[x(n)/0, x'(n - DIp[0/x (n - 1)]

Sp[xi(n)/9, x(n - 1)]p[6/x‘(n - 1)]d6

= _p(xl(n)/ﬂ . pl6/xn - )] (1V-3)
~gp(xl(n)/e)p[e/xl(n - 1)]ad

where the simplification in the second step comes about due to the
assumed "conditional independence" of the sample patterns.*

We have also dropped the explicit dependence of p[G/Xi(n)] in H
for notational simplicity. It is understood that (IV-3) has to be carried
out for each class.

Equation (IV-~3) is a recursive computational procedure which
is often referred to as "learning with teacher." The computational
feasibility of (IV-3) depends critically on the existence of a fixed
dimensional sufficient statistic for the relevant prior and posterior
density functions. In other words, one would like to be able to com-

A
pute recursively a vector, 9;, with the property that

* By conditional independence we mean p(xi(n)/e) = p[xl(n)/e, Xl(n -1)...

1)),
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p(8/01) < p[6/x (n)] | (1v-4)

Then instead of doing recursion on functions which is the case for
Eq. (IV-3), one is only concerned with updating a set of numbers,
6; Prior and posterior density functions which satisfy this require-
ment are called conjugate or reproducing pairs. They have been
extensively studied by Raiffa and Schlaifer (1960)[40] and Spragin

[45’ 46]. It can be shown that in the limit of an infinite number

(1963)

of learning samples, the reproducing densities have the property that

lim 6 —6 - (IV-5)
n

n—+owo
in some appropriate sense. Thus, this learning scheme used with any
of the decision functions of case A is at least asymptotically optimal
and in the limit produces results as good as if 6 were known. In

fact, if one interprets the a and p as average error probabilities with

o 8 S 1 p(x/6, H%)p(68/x°(n), H®)d6

X
(IV-6)

[]>2

(" /0, 51616/ (), H)a8

x©
then optimality for a finite number of learning samples can also be
claimed. In general, however, the relationship between system per-
formance and this learning scheme for finite samples is only quali-
tative and has not been investigated thoroughly. Putting it less
precisely, we have the question: "Given the optimal decision function
as a function of 0 and the best estimate of 8, does the over-all optimal

decision function simply involve the replacement of 6 by its estimate ?"
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Special case of Gaussian p(x/H', 6)

Consider the case where p(x/H’, 6) is N(6*, =), = given, and let

p(6*) be N(gl, P). An easy way to treat this problem will be to consider

ooty (IV-17)
where v is N(0, Z)
- . A
Then p(0'/x'(n) is gaussian with mean 9; and covariance Pn
where
Ao gl i Al 2 gl -
9n = 6n_1 + Pn(x (n) 9n_1) , 90 =0 (IV-8)
- -1 - -
P =P _,-P (P +% P _ , P =P . (IV-9)

This reduces p(x/x;, Hl) to a gaussian distribution with mean 9; and
A

covariance Pn + 2. The numbers 9; and Pn constitute a set of

finite dimensional sufficient statistics for xl(n). If £ is the same for

the two categories, we have the linear decision function as
f(x) = G.Tx +a
o

T _ -1.A1 _ 2o
a” = (P, +Z) (9n Gn)

Note that equations (IV-8) and (IV-9) are a special case of the
"Kalman Filter" mentioned in Eqs. (III-14) and (III-15) (with =0
and w, = 0). This was first worked out independently by Abramson
and Braverman. [1]

If = is also unknown then the conjugate density is gauss-wishart

(Keehn, 1963)l28]

If Z)i are known but different or if 6" are time
varying and can be represented by a gauss-Markov process, then
the theory of "Kalman Filter" can again be directly used to develop

decision functions (or equivalently estimates for 6%) that "tracks" the

variations.
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Special Case of Discrete Distribution

In the discussion so far, the learning of L(x), Eq. (IV-1-IV-3)
and the determination of f(x), Eq. (III-2) are two separate problems.
In certain simplified cases it is possible to devise a "learning"
procedure for f(x) directly. Sklansky [44] has considered the classi-
fication of a sequence of independent binary signals transmitted over
a noisy channel. Let x(j) be the channel outputs, we consider a decision
function

f(x) =x-n (IV-10)
If the distribution of x as well as the choice of n values is discrete,
then for a given procedure of changing n values after each wrong
decision, the probabilities of n at the various permissible values
form a markov chain. The property and convergence of this markov
chain can be straightforwardly calculated once the transition proba-
bilities (i.e. the learning procedures) are given. From this, the
error probabilities of f(x) follows.

The performance of a scheme of this type depends to a large
extent on the type of updating for n. Kaplan and Sklansky [27] have
analyzed the properties of markov chains resulting from some typical

learning procedures specified on an intuitive basis.

V. Case C - Data Type (i) and (iv) Are Given

In this case again the given set of sample patterns will be used
to learn the parameters 8. But now the given learning samples are
unclassified, bringing in additional uncertainty. Appropriately this
type of learning is often called "Learning Without Teacher. " Daly

(1 962)[17] suggested a scheme which works in this case but the
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computation grows exponentially. Later Fralic suggested a bounded

22
[22,21] which was further extended by Patrick and Hancock[37].

scheme
The basic ideas in section IV still apply here. We may rewrite

Eq. (IV-3) as

p(x(n)/8, x(n = 1)
p{x(n)/x(n - 1))

p(6/ x(n)) p(0/x(n - 1))

p{x(n) /0, x(n - 1), HY B(H®) + plx(n)/0, x(n - 1), H'}P(H')

p(x(n)/x(n - 1), HO)P(H%) +p(x(n)/x(n - 1), H)P(H')

- p(6/x(n - 1)
The only difference occurs in the way we compute the ratio between
"prior" and "posterior" density. The added term essentially represents
a form of "hedging."
Heuristically, we can see the effect as follows. Consider the
case where x(n) came from H1 . Now the multiplying factor on the
right-hand side of Eq. (V-1) is of the form g: g

tional knowledge about its class, it will only be A . For x(n) actually

B
from H' we generally have A > B and in this case %> %—I—g— . This

while with the addi-

tends to indicate that the process of learning will be slower in the
case of "Learning Without Teacher." Essentially we are paying for
the uncertainty about the classification of learning samples in terms
of slower learning. Viewed in this light, the difference between
learning "With" or "Without" teacher is conceptually minimal.
Another example illustrates this point. Consider the classification

problem shown in Figure 1.




P(H'/x) = Y peH
Class O: pre X)=p(x/H)P(H) » Class 1

FIGURE |
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Suppose
(i) A set of samples yx(n) was taken and correct classification was
attached to these.

(ii) A set of samples x(n) was taken and classifications were assigned
according to the probability P(Hi/x).

It is clear that for n - «no difference in learning behavior can be ob-
served from using samples from (i) or (ii) through the schemes of
section IV.

Computationally, Eq. (V-~1) is much more difficult than its
counterpart, Eq. (IV-3). With the presence of the additional terms
the "reproducing property" is lost.

Interpretation of Eq. (V-1) also requires some care. Since
learning samples are unclassified, Eq. (V~1) cannot be carried out
separately for each class in general. Let 8 represent the unknown
parameters in both classes, 6! ana 6°. If, in addition, we assume
P(Gl, Go/x(n)) = p(e1 / x(n)) p(eo/x(n)) then we can separate Eq. (V-1)

into (V-2).

1
Z p(x(n)/6", x(n - 1),Hj)p(Hj)

p(6'/x(n)) = ~‘1° p(8'/x(n - 1)
Z p(x(n)/x(n - 1), H)p(H)
i=0 (V-2)
i=0,1

Furthermore, we can usually unite p(x(n)/@i, x(n - 1), H) = p(x(n)/x(n - 1), HY)
j#i. Eq. (V-2)is essentially Fralick's scheme. Note if p(8'/x(n)) is

identical for i = 0,1 and P(H°) = P(Hl) then no learning can take place.
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In the work of Patrick and Hancock[37] the independence assumption
of 8° and 6! is not made and computation must take place via the
single Eq. (V-1) with the resultant added complexity. The only
simplification is to note that p(x(n)/0, x(n - 1), Hj) = p(x(n)/x(n - 1), Hj)
for j=0,1.

The main advantage of learning without a teacher results from
the fact that when actual processing of data is in progress (after
initial learning from the sample patterns with classification) learning
can still continue and eventually a machine learning this way may do
much better than a machine which is trained only by initial learning
with classified samples.

Very little computational result has been reported in the litera-
ture although our society seems to abound with real life examples of

"learning without teacher" or even "learning in spite of the teacher. "

VI. Case D - Data Type (iii) Given Only (Deterministic Methods)

The previous three sections had dealt with algorithms which
require knowledge of the structural forms of the underlying distribu-
tions of the pattern classes. Criticism has often been raised that in
practice information concerning data type (i) is seldom available. This
has prompted development of algorithms for the construction of
decision functions which do not require (i). Basically the idea is to
find an f(x) which 'works well' at least on the given samples of known
classification.

Two implicit assumptions of this approach are:

(a) A sufficient number of samples from both classes are available to

constitute two representative groups.
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(b) The characteristic problem (i.e. x = ¢(z)) has been solved using a
sufficiently rich class of ¢(z)'s so that it is only necessary to examine
the class of linear f(x) to solve the abstraction problem.

Assumption (ii) is often justified on the basis of the Weierstrass
approximation theorem. However, this merely transfers the diffi-
culty to the characterization problem since one is still faced with the
problem of finding a class of complete ¢(z)'s which can efficiently
represent the pattern. Furthermore, relatively little work has been
done on rendering the adjectives "sufficient, representative, and
efficient" quantity in the above assumptions. The works of Cover (1964)[15]
Allais (1965)[4] and Watanabe (1965)[50] bear on this aspect of the
problem. We shall discuss them separatly later.

Accepting (a) and (b), one can now restate the problem of abstrac-
tion more succinctly. Let there be a total of N patterns given (n1 in
class Hl, n_ in HO, n tn = N) and consider the linear decision
function

f(x) = alx + o (VI-1)
The problem of determining a f(x) which classifies all the given patterns
correctly is equivalent to the problem of finding a solution to the vector
inequality

Aw > o (VI-2)

where

X

A=z |-~%o
O

T .
1 1 () } i=1,...,n;; class 1 samples

-1 -x~ (1) } 1=1,---’n0; class o samples

(VI-3)
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a
w= == (VI-4)
a

A common procedure for solving linear inequalities is to transform
it into an optimization problem the solution of which also guarantees

a solution for (VI-2). For example, consider
Min J(w) = Min || |Aw]| - Aw || (VI-5)
w w

The solution for (VI-2), if it exists, must correspond to the minimum

of (VI-5) which is zero. If we try a gradient descent procedure for

minimizing (VI-5), then we are led immediately to

wii + 1) = wij) +P 5%
w=w(j)
= wij) + PAT[|Aw(j)| - Aw(]; P > o (VI-6)
or N
wii+1) = w(j) +0 Z <@ |x) Twi) | - xT@)w(i)]  (VI-61)%
i=1

Algorithms of the type of Eq. (VI-6) are often referred to as "many

pattern adaptation" in the sense that all given pattern samples are

used in one iteration of the weighting vector "w". The corresponding

single pattern adaptation of (VI-6) is

. . . O Y N
w(j + 1) = w(j) + Px()(|x() " w() | - x() " w(3)) (VI-7)
For p = 2, Eq. (VI-7) is simply the well-known peceptron algorithm

(Novikoff (1 962))[36] which was originally developed on the simple idea

* In (VI-6) we have abused our notation to let x(i) represent the vector
+1

x(i)
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of reward and punishment and which is known to converge in a finite
number of steps.

The idea of viewing a learning algorithm as an iterative and
deterministic optimization procedure for some criterion function
can be used to interpret other algorithms and to discover new ones.
In fact, our ability to create new algorithms is only limited by our
ability to find meaningful new criteria. Table I identifies a set of
algorithms as gradient procedures for a corresponding set of criterion
functions.

The Generalization Question

One of the basic problems of the algorithms of this type is the
question of generalization. In the absence of any probabilistic infor-
mation, the only result along this line seems to be the important
result of Cover (1964)[15]. Cover shows that in general the number
of samples, N, must be at least equal to or larger than twice the
number of attributes, m, for the algorithm of this case to yield
meaningful results. If we allow ourselves the luxury of gaussian
xi's, then Allais demonstrates a more explicit relationship between
N, m and the LMS algorithm of Table I. [4] Another interesting pro-
perty of the LMS algorithm is pointed out by Groner [23]. It turns

2
out that the w 2 {ao,a} which minimizes ||Aw - [30” can also be

expressed as

_ 1 o-1,1 o -
o.—(Z‘s+ZS) (p.s p.s) {(VI-8)

1 o 1 o,, 1 o
a =g tR NE+ Z (g + 1)

where
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p.:, = sample mean of class H

i . i
ZS = sample covariance of class H

Furthermore, the "a" in Eq. (VI-8) also maximizes the Maholanobis

(5]

distance criterion

- 1)

+ Eo)a
s

) [aT(n

o.T(Z)

(VI-9)

w =n -

which has the simple interpretation of maximizing interclass distance
and minimizing total dispersionofthe projections of the patterns onto
the decision surface f(x).

Eq. (VI-8) can be further generalized. Peterson and Mattson[38]
have shown that for a linear decision function of the type of Eq. (VI-1)
and a criterion function J which depends only on sample means and

covariances of the two classes, the optimal "a" is given via

(o]

1 o-1,1
a = (k Zs + kozs) (p,s - p.s) (VI-10)

1
where ko and k1 are constants that can be determined.”

While these connections of the linear decision function and the
statistical parameters of the sample patterns are interesting, they do
not completely answer the generalization question in terms of the
error probabilities a and P of (III-3) and (III-4).

A recent important result of Cover and Hart (1967)[16] is an
exception to this point. They show that if we classify a sample by

the classification of its nearest (according to some distance measure)

* The validity of (VI-10) is, of course, still good if we replace sample
means and covariances by true mean and covariances.
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neighboring sample of known classification, the error probability of
such a decision is bounded from above by twice the optimal Bayes error
probabilities of section III{(ii) when all the underlying probabilities are
known. This Nearest Neighbor decision function is originally due to
Fix and Hodges[53].

Two other statistical techniques commonly used in data analysis
called "jacknife" and "leaving-one-out nl33) may be useful to shed
further light on this question. This technique consists of successively
solving a series of optimization problems each time leaving out a
different sample pattern. Variation in the solutions of these problems
will then indirectly provide a quantitative answer to the adequateness

of assumption (i). This approach apparently has not been exploited in

the usual pattern classification literature.

The Characterization Problem

Although we conveniently avoided the question of how to choose
a mapping ¢ : z - x the question is nevertheless an important one.
There do not seem to be many generally applicable schemes which
possess noteworthy properties that are independent of the particular
type of recognition problems in question. An important result due to
Watanabe (1965)[50] does, however, fill the requirement. Consider
the (sample) covariance matrices of each class, 'Z ;} and Z  and the

z z

linear combination
== PH)Z | + PHOZ , (VI-11)
z Z

Let the dim. (z) = p which is usually very large compared to the desired

dimension for x, m. Let the vectors t;,t,,..., tp be the normalized
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eigenvectors of = ordered according to M (Z) = A (2) Z ... Z A (D).

The t.'s form a basis in p space.” We may write

P
. T
z = Z x.t. with X, =z t, (VI-12)
il i i
i=1
. 1.,1.2 0,,.0,2 &
The magnitude of %, or more accurately P(H )(Xi) + P(H )(Xi) = e,

can be considered as a good measure of the extent to which the coordi-
nate vector t, is useful in representing the members of the two classes.

It turns out in this set up that the following properties are true:

(P (! - Z x,t,)% + P(H)(z° - Z x,t,)%Y =
i=1 i=1
m m
. 1,1 2 0,, O 2
MinE(P(H )(z~ - xisi) + P(H )(z~ - xisi) for all m.
s
i i=1 i=1

(VI-13)
i.e. the t coordinate system has the least square approximation
property.
(ii) The t, coordinate system minimizes the entropy function

p
s(t.) & -Ze.lne. (VI-14)
1 1 1

i=1
among all possible coordinate systems, where ei's are as defined
above. (i) and (ii) imply that there exists a natural (according to (VI-13)
and (VI-14)) characterization of the attributes in terms of the large

eigenvectors of the composite covariance matrix of the problem.

* They constitute the Karhunen-Loeve coordinate system.
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This phenomenon is related to the method of factor analysis and which
we shall encounter again in section VIII.

Extension to Nonlinear f(x)

Once the approach for the linear case is clear, the extension to the
nonlinear case is conceptually straightforward. Instead of linear in-
equalities, we deal with nonlinear inequalities or piecewise linear
inequalities. Various established or ad hoc techniques in non-linear
programming can be brought to bear on the abstraction problem[42].

Arkadev and Braverman[7] have suggested an algorithm which
tries to arrive at a piecewise linear f(x) from the given set of classi-
fied'x's. The algorithm proceeds to find the best hyperplane to
separate the given samples. As more samples come and this plane
fails to classify them, more hyperplanes are connected to it until all
given samples are correctly classified. Finally all redundant portions

of the planes are deleted giving a piecewise linear f(x).

VII. Case E. Data Type (iii) Only Given (Stochastic Methods)

The algorithms described in section VI with the exception of
the NN algorithm, despite their simplicity and practical usefulness,
suffer oné general drawback in terms of relating the decision func-
tions obtained to a quantitative evaluation of its generalization capa-
bilities. Since the latter question is best answered in terms of error
probabilities, or equivalently the knowledge of P(Hi,{x), some pro-
babilistic structure will have to be put back into the formulation of
the problem, implicitly or explicitly.

One approach to this problem is to consider that P(Hi/x) as a

function of x can be expanded in a series. Let us consider



_30-

>

f(x) 2 Pl /x) - /%) & 2P /x) - 1

@
p—

Z a, ¢(x) (VII-1)

j=o

e

where ¢i(x) is some class of complete (possibly orthonormal) function
which one conveniently assumes to be given as a result of solving the
characterization problem. For every given sample pattern, there
corresponds a ¢[x(i)] or ¢(i). The problem is then simply reduced

to the determination of the parameters, aj, of a function f(x) when

the values of the function are measured at randomly selected points.
This is essentially the approach taken by Aizerman, Baverman and
Rozonoer[3], Tsypkin[48], Blaydon and Ho[s], Kashyap and Blaydon[?'g],
Patterson, Wagner and Womack[39], and Nicolic and Fu[35]*. Define

a classification variable §[x(i)] by

1 x(i) € H1
glx(3)] = . (VII-2)
-1 x(i) e H
One may visualize §(i) as a noisy measurement of the value of the

function f(x) at the sample point (pattern) §(i).

g(i) 2 (1)) + v(i) (VII-3)

where v(i) are independent random variables with

E[v(i)] = [1 - £€0)]P[H!/x()] + [-1 - £0)][L - P(H/x(i))]

2[1 - P /x(i)[PH /(1)) - 2P(H! /x(@)(1 - PH/x(i))] = 0

H

(VII-4)

(7] in

* These methods are also called "Potential Function" methods" -,
the Russian literature.
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Now consider the minimization of the regression function

J =Min E{|¢ - aT¢ “2} (VII-5)
a

which in view of Eqs. (VII-3-VII-4) can be shown to be equivalent to

7= Min E{||£(x) - «T$ %} (VII-6)
a

Thus if one finds a finite dimensional @ which minimizes J in Eq. (VII-5)
then one has also found the optimal mean square approximation to f(x).
A well known method for minimization of regression functions is via
stochastic approximation using the given noisy sample values of the

function. We have

a(i +1) =a(i) + P (1) $HEE) - a (i) ()] (VII-7)
with

Z pl) == ; Z po(i) < = (VII-8)

i=1 i=1

With mild assumptions on ¢, the algorithm of Eq. (VII-7) is known to

5K
converge w.p.l. toa” where

a*=arg min E{|¢ - O.Td) “2} (VII-9)

Hence arg min E{ “f(x) - °-T¢ “2}

This constitutes a learning scheme with teacher which is asympto-
tically optimal in 2 mean square sense w.r.t. the classification

probabilities. Another way of visualizing (VII-7) is to note that

a)e - aTy|?
aa 4’(1)

and (VII-7) is simply the stochastic analog of the gradient method for

SO EE) - a T (@) =

minimization. In fact, if one considers instead
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ai +1) = a(i) + () SEENEE) - a T (1)4(1)] (VII-7")

where

He>

T,.-1
S = [E(¢¢ )] (VII-10)
one has the analog of the second order descent method which generally

converges faster. Since S in Eq. (VII-10) is not given in general, one

may substitute instead

i .
S(i) = [+ Z ¢(e(h T 2 ipG) (VII-11)

1
=1

Not surprisingly, the recursive computation of P(i) is governed by
P(i + 1) = P(i) - P()¢(1) (1) TP()¢() + 1V 4w)TPw) ; P(1) = 1

(VII-12)
which is a special case of Eq. (IV-9). Furthermore, a(i + 1) from
Eq. (VII-7) has the property that
i+l
. . . T, ,.\.12
a(i +1) = arg. min. [8(3) - a ()]
j=1

In other words, it is also the solution of the LMS algorithm of section VI.
Using the method of stochastic approximation, one can show[s] that
Eq. (VII-7') also converges w.p.1l. to a®, thus, furnishing additional
rationalization for the LMS algorithm.

The choice of the base function set ¢ has been so far left open.
A particular approach to the problem has been suggested by Brick[gl.
Instead of expending f(x) in a series, p(x/Hi) may be expended in a
series of orthonormal functions, the normalized Hermite functions.

Brick has shown that these coefficients appear as some ensemble

average which, given certain a priori information, can be precomputed.
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In case of ergodic processes, however, these ensamble averages can
be replaced by time averages and can be easily determined experi-
mentally given a set of classified samples for initial learning.
Furthermore, if the system parameters are known to change gra-
dually a bootstrap updating of these coefficients is possible during
the run, improving continuously on the "Learned" coefficients.

The main advantage of this scheme is the possibility of imple-
mentation in circuit form for ergodic processes, where the coefficients
appear only as amplifier gains which can be easily preadjusted or
changed automatically. The number of terms to be used in the expan-
sion depends, however, on the complexity of the form of p(x/Hi). In
practical situations the implementation may not be feasible for any

moderately complex system.

VIII. Case F - Data Type (iv) Given Only

This is the extreme case in pattern classification where minimal
information is available for the design of f(x). Not much has been
reported in the literature about the approaches for this case which
are often heuristic or experimental, justified only by the fact that
they "work" in some sense according to the author. Analytically,
the problem can be resolved in either one of two ways:
(a) Reintroduce, explicitly or implicitly, some criterion of separa-
tion onto the set of unclassified sample patterns. This is used in
conjunction with the same algorithms of the case D in a bootstrap
fashion, i.e. one uses the result of classification at one iteration to
produce the "classified" learning sample for the learning cycle. For

example a bootstrap algorithm results if we try to rewrite Eq. (VII-5) as
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7 = Min E{ [« T¢ - SgnlaT¢)||%} (VIII-3)

. 1 . ) .
Mlller[3 ] has examined this criterion function for a linear f(x) i. e.

where ¢ is only x. For this case J becomes

J'= Min E{ ”o.Tx - Sgn(o.Tx) ”2} (VIII-31)
a

and an algorithm parallel to Eq. (VII-7) may be given as
afk + 1) = a(k) - 20(k)a T (K)x(k) - Sgn{a T (k)x(k)} Jx(k)
(VIII-4)

with

AN |

Plk) == ; Z PA(k) <
k=1

1
Miller found that the J' surface, in general, has saddle points and
local minimums. In the case of gaussian distributions with the same
covariance matrix and By = "Hgs the J' surface has two local mini-
mums with the same minimum value and the algorithm of Eq. (VIII-4)
converges to one of the two minima w.p.1l. However, in this case

the value of a at one minimum is the negative of the value at the
other. As the decision takes place according to o.Tx 20 the decision
surface using either value merely results in the relabelling of the
classes.

It should be pointed out that if this externally imposed criterion
of separation happens to resemble the natural criterion of separation
then all is well. For example, consider the two-dimensional
examples shown in Fig. 2 where the actual identity of the sample

points is unknown to the classifier. One can nevertheless require

that a separating plane (linear decision function) be constructed with




a - Direction of
max - eigenvector
of the covariance
matrix of the
sample points
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FIGURE 2
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the normal "a" coincide with the direction of the maximal eigenvector

of the covariance matrix of the sample points, i.e.

a parallel to the max eigenvector of (ATA) (VIII-5)
where
I
A = : (VILI-6)
xT(N)

If this eigenvector direction is determined via the usual iterative
power method then one has derived a "learning" scheme which "works. "
However, it is equally obvious that had the two classes been distri-
buted as in Fig. 3 the learning scheme would have failed. The above
approach actually formed the essence of a very successful bootstrap
self-correction scheme by Nagy and Shelton[34] for character
recognition and is closely related to the method of principal compo-
nent in factor analysis.

A slightly difference approach in introducing a criterion has
been taken by Rogers and Ta.nimoto[4]. A distance measure dij for
X and Xj may be defined as

4 = 8lx;, %)) (VIII-7)

Assuming there are only two classes, we define a homogeneity
function for each class. The function has dij’ the interpair dis-
tances of the various sample patterns as its arguments. The
assignment of a given sample pattern to a particular class changes
the value of the homogeneity function of that class. The criterion

of classification is that the two homogeneity functions have minimal




FIGURE 3
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difference in their value. Analytically we may visualize this as
follows:

Let

be the homogeneity functions involved. n is a parameter which
assigns the usage of a particular dij to the evaluation of u, or ul*.
Classification then involves the choice of n such that the difference
Ut U is minimized.

This scheme can be very easily generalized to a multiclass
case where the number of classes is not known a priori. In this
light we shall encounter it again in the next section.

(b) Attempt a more or less brute force computation of the learning
equation (V-1) in section V. The pertinent probability density func-
tions are approximated by histograms using the given data. . Patrick
and Hancock claim convergence of this computational procedure[37].
However, little or no actual experiences have been reported. Due
to the lack of sufficient statistics and the large amount of data

usually required for histograms to yield good approximations, the

feasibility of such a scheme remains to be demonstrated.

b

For example: Roger and Tanimoto will successively include more
and more dij in the evaluation of uy or uy until they exceed a value.

The assumption here is that each class should be homogeneously

similar. If for a given n, Uy >> u,, then some member of class 1

should be class 0 and vice versa.
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IX. Multiclass Problem

So far we have concerned ourselves only with two-class problems.
A few words about multiclass problems are in order.
In a multiclass problem we have to decide to which of m

classes H', H%, HO

y o ey H™ the given pattern vector x belongs.

For problems having a probabilistic structure i.e. from case A, B,
C and E, the extension to a multiclass case is straightforward. In-
stead of considering the likelihood ratio formed by the two conditional
probabilities and testing it against a threshold for a two-class case,
we may directly consider p(x/Hi) or P(Hi/x) and pick the largest

of these. This procedure is optimal in the sense that it minimizes
the error probability.

More generally, we may define a set of decision functions £1(x)

and take decisions as x belonging to H' if

f(x) > P(x) for all j # i (IX-1)

for the problems of case A, B, C and E

fi(x) = p(x/Hi) or P(Hi(x) (IX-2)
In the case of deterministic algorithms (nonprobabilistic
structure) the extension to multi-class problems is not as natural.
A multiclass problem is usually reduced to a collection of two-class
problems. This reduction depends on the separability which exists
in the multiclass problem and may be of three types.
(i) Each class may be separable from all the rest by a single decision
surface. Then we may take the decision according to
>0 ifx ¢ H'

£(x)
<o otherwise

This reduces the multiclass problem to m - 1 two-class problems
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(ii) Each class may be separable from each other class. Now we
have 2(1’;1_'_11 two-class problems and as many decision functions

such that

.. >o0 if x € H! i .
(%) j given x belongs to H or 120
<o ifx e H (XI-3)

The unknown x is classified as g only if*

flx) >0 forallj#i

(iii) There exist m f'(x) such that x belongs to H" only if

fi(x) > H(x) forall j#i (XI-4)

Note that this is a special case of (ii) as we may define

Mx) = f(x) - (x) foralljfi (XI-5)

In cases A, B, C and E, as we noted earlier, fi(x) of Eq. (XI-4)
are the conditional probabilities. For deterministic case D a
criterion of separation is introduced. For example one may consider
the inverse of distance criterion which is the extension of the Nearest
Neighbor approach to this case.

The way we may try to reduce a multiclass problem to a set
of two-class problems depends on the individual problem. It should
be pointed out that if we are not restricting fi(x) to be of a parti-
cular form (linear or quadratic etc) then the distinction of these
three types is artificial as we can always find suitable fi(x) to use

with any of the desired three types.

* Some irrelevant results will be obtained in the process from the
cases where x coming from Hk, k # i,j is being tried.
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Though we have presented all the algorithms as they are
applicable to two-class problems, often the authors have extended
it to the multiclass case. The number of classes is assumed
known in all these schemes. One exception is the paper by Rogers
and Tanimoto[41] mentioned under case F. The procedure they
use is independent of the knowledge of the number of classes. By
computing an auxiliary index of "typicality" they permit the proce-
dure to adjust itself to produce automatically the number of classes

in order to satisfy a homogeneity criterion.

X. Conclusion

Based on the above survey and analysis, a few remarks
(perhaps controversial) seem in order:
(i) Roughly} speaking, classification algorithms can be broadly divided
into two groups; probabilistically or nonprobabilistically based. The
former group, comprising cases A-C, enjoys the obvious advantage
of being easy to assess the generalization ability of the results. On
the other hand, it is often difficult to justify the availability of the
required input data. The latter group representing cases D-F is
just the reverse. By being more realistic on input data require-
ments it made precise quantitative evaluation of performance much
more involved and difficult. Although it seems reasonable to
assume that as our analytical ability advances this difficulty will
gradually ease. The main "learning" tool for the first group is
the recursive application of the Bayes Rule while that of the latter
is the iterative solution of an optimization criterion. Both techniques

are fundamental to stochastic and deterministic control theory. It
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is expected that further cross fertilization will take place between
these two fields.

(ii) "Characterization" remains to be a major open problem.

(iii) Relatively little experimentation with these algorithms have
been carried out with real life classification problems compared

to the number of proposed approaches. This is not so much a
general criticism of the papers but a comment on the difficulties of
obtaining real data. An often overlooked and unappreciated problem
is that of converting or generating enough samples of x(i) from ori-
ginal data in real problems. Enormous data processing time or
specially designed data processing machines are needed. In fact,
it is the authors!' belief that this often represents the major cost of
a pattern classification project. Once this is done, the solution of
the abstraction problem tends to be straightforward.

In this paper we have attempted a classification of the various
pattern classification techniques that have been reported in the
literature. The purpose has been to try to lay bare the underlying
statistical and mathematical principles used in the development of
these algorithms. Only when such a classification is complete then
can meaningful comparisons among the numerous approaches be made.
Furthermore, deficiencies as well as advantages of the various
schemes hopefully can be made obvious and progress of the field
as a whole can be sped up.

A complete coverage of the literature in this field is neither
possible nor desirable. It is nevertheless believed that our classi-

fication is reasonably complete and workable, and future approaches
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can be fitted into this framework, i.e. our scheme possesses the
generalization property. There are many other papers which have
appeared in literature. We leave it as an excercise for the reader
to find their case classifications. The authors welcome additions

to their bibliography for the various cases.
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